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k Abstract N ;}/

) > This paper provides a probabilistic analysis of the so-called #strong"/
: linear programming relaxation of the k-median problem. The analysis is

performed under four classical models in location theory, the Euclidean,

‘," [
network, tree and uniform cost models. For example, we shown that, for the
N er =~ Sfuercds

Euclidean model and 1log n é k\s n/(log n)¥, the value of the relaxation is

almost surely within .3 percent of the optimum k-median value. A similar
T s
analysis is performed for the other models. We-also showf\&:hat, under various

b assumptions, branch and bound algorithms that use this relaxation as a bound

must almost surely expand a non-polynomial number of nodes to solve the k-
- >
median problem to optimality. Finally, $we—repert extensive computational

,i"' 'w‘_r\;rfe L

experimentsA As predicted by the probabilistic analysié, the relaxation was

not as tight for the problem instances drawn from the uniform cost model as

for the other models.
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'E 1. Introduction

ﬁ‘ The k-median problem has been widely studied both from the theoretical
i point of view and for its applicat:oms. An interesting theoretical
;5 ) development was the successful probabilistic analysis of several heuristics
* for this problem (e.g. Fisher and Hochbaum (8] and Papadimitriou [22]). On
ﬁ ’ the other hand, the literature on the k-median problem abounds in exact
‘E algorithms. .Most are based on the solution of a certain relaxation to be

defined later. The computational experience reported in the literature seems

o B

to indicate that this particular relaxation yields impressively tight bounds

compared to what can usually be expected in integer programming. In this

* ‘J”--"--
a e e s

paper we analyze to what extent this relaxation is tight. We perform our
analysis under various probabilistic assumptions and identify conditions under
which the relaxation can be expected to be tight and others under which it can
be expected to give a poor bound. For example, for a classical Euclidean -

model in the plane, we show that the relaxation can be expected to provide a

AXAAAAN ) SRR AR

bound within one third of one percent of thé optimum value of the k-median
problem. In addition to the probabilistic analysis, we also report extensive
computational experiments, based on the solution of thousands of medium-size
problems. Some of the results predicted for very large problems by our
probabilistic analysis can already be observed on these test problems.

2 Consider a set X:{X ..,Xn} of n points, a positive integer k< n and

1A

L}

Y let diJ 2 0 be the distance between X; and XJ for each
1<i<nand 1< Jj<n. (Unless otherwise specified, it is assumed that d;y

for all i,j,k). The k-median problem

consists of finding a set S c X, |S| = k, that minimizes 2 min dij'
i=1 JeS
|S| denotes the cardinality of the set S.) The k-median problem has the

(Here

-

L3002 20 T

following integer programming formulation.

\}'h y
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2
D)
(1) z.,s min d..y
IP 151 421 ij’ij
n
(2) ) yiy = 1 for iz1,...yn
3=1
n
(3) z xJ = k
3=1
4) 0< yiJ < xJ <1 fori,j=1,...,n
(5) %€ {0,1} for 3 = 1,...,n.
y In this formulation xJ =1 if xj €S, O otherwise and, for 1< i < n, we can
g set yij = 1 for an index j that achieves min dij'
JeS -
i The formulation (1)-(4) is called the linear programming (LP) relaxation
E ' of the k-median problem. In other words, the LP relaxation is obtained by
;l
5 ignoring the integrality conditions on Xy 1 ¢ 3 <n. The optimum value z;p

of this relaxdtion ‘clearly satisfies 2{p < Z1p- The bound 2;p has been used
extensively in exact algorithms for the k-median problem. (E.g. Marsten [15],
Garfinkel Neebe and Rao {101, ReVelle and Swain [23], Dienhr[5], Shrage[2i],
Guignard and Spielberg{11], Narula, Ogbu and Samuelsson([20], Cornuejols,
Fisher and Nemhauser [3], Erlenkotter [6], Galvdo [9], Magnanti and Wong [14],

Nemhauser and Wolsey [21]), Mulvey and Crowder [19], Mavrides [16],

Mirchandani, Oudjit and Wong [17], Christofides and Beasley [2], Beasley[1].)

Most of the computational experience has been reported on test problems

with n< 100. For many of these test problems, Zip ZLP’ Recently,
Beasley [1] solved forty larger problems (with 100 < n < 900) and found a ‘Sh"f
VA -2 ‘:\.:‘:: ‘}.
small but positive gap z;p-z;p for many of them. The average of IPZ LP :{{;Ii
Ip "“';\
over these problems was .002Y4. ';;S§
Z.,-2 g"ﬂ.
In this paper we analyze the ratio —15——E£ from a probabilistic point A
' 1p NN
of view as n goes to infinity, under various assumptions on the probability ﬁyﬁ:ﬁ
oA
A

(|
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distribution of problem instances. We do not address the worst-case analysis
of this ratio except to note that this question was solved by Cornuejols,
Fisher and Nemhauser [3] when diJ < 0. The analysis of [3] does not carry
over when the dij's are nonnegative and satisfy the distance axioms. In fact,
this worst-case analysis is an interesting open question. It would also be

2. ~2
interesting to know the worst-case value of AP _LP when the diJ's are

z
1P
further restricted to represent Euclidean distances. Once again, these

questions are not addressed here as we focus on a probabilistic approach.

We will often write statements like Xn < u almost surely (a.s.) for a
sequence of random variables (Xn) and real sequence (un). This is a well-
defined terminology of probability theory and details can be found in Stout

[25] for example. We will invariably prove that

J Pr(X_ >u) e
n=1 n n
which implies the above statement. Non-probabilists will be satisfied that we
show Pr(Xn > un) -0 as n + =, If X, < u,(1+0(1)) a.s. and X, 2
u,(1-0(1)) a.s. then we write Xn ~u, a.s.
First we study the k-median problem in the plane. When the points

X1,...,Xn are uniformly distributed in a unit square and dij is the Euclidean

. . 21p~%Lp
distance between X; and XJ’ 1<1i,j <n, we show that ——;;;—— ~.00284
almost surely, for any k such that w < k < - ?ogn where w = w(n) +» =, (In
this paper we abbreviate f(n) = a as n +~ = by f(n) + a.)
In a second model, the points X1,...,Xn are the nodes of a random graph

Gn(p) where p is the probability that an edge is in the graph, and dij is the
number of edges on the shortest path from Xi to XJ. We assume p > 9—1%5—9

where w = w(n) » » (this guarantees that G,(p) is almost surely connected),

- >
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21p ~ Zp

z
IP
the base of natural logarithms. More specifically, if logyn < k < n where

<

and kp%2 9—l§s—5. We prove that $ o7

almost surely, where e is

e e 8T .-

b:T%E, then z;p = 2z;p almost surely. If 2 <k < logyn, kp+a where 0 <a <=
and p+B8 where 0<8<1, define a =z e if 8 = 0 and (1-8)1'B if 8 > 0; then
Z1p~ 2 1-(1-a)*a®
—_— - f(a,8) almost surely where f(a,8) = —————,
IP 1+a%

LP (The maximum of
this function is E%T attained when az1 and 8=0. When a=0 or = the

function takes the value 0).

We also analyze the k-median problem on random trees and on another model

s o E R .S LW N TV TSN e w8

where it is assumed that the diJ's are independently and uniformly distributed

on [0,1].

In section 6, we put our probabilistic results in perspective by

presenting extensive computational experiments.

. In section 7, we show how our results for the k-median problem relate to
E Ehe simple plant location problem (SPLP). ' In the SPLPR, the data~éomprise.n
é points X,, ..., X,, distances dij for 1<i, j<n, and fixed costs £y
E associated with each point XJ, 1< Jns n. The SPLP consists of finding a
nonempty set S c X that minimizes .z min diJ + fj . (Note that, in

i=1 jeS JeS

this problem, |S| is not restricted as in the k-median problem.) An integer

programming formulation of SPLP is

a2 o = =t e 4

subject to (2), (4) and (5). The LP relaxation is obtained by relaxing the

W WY

VAN
YN

.
s, " % ‘Y
.

integrality conditions (5).
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In the remainder of this section we state some useful results from the
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literature. Our proofs use the following lemma (see Hoeffding[12]).
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Lemma 1. If Y4,..,Y, are independent random variables and 0 < Yis 1 for
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{ i=1,...,n, then, for 0<e<1,

-eenu/3

Pr(Y 2 (1+e)u) < e and

2
Pr(? < (1-¢)u) < &€ nu/2 ,

n
where ¥ = () Yi]/n and u is the expected value of ¥.
i=1

Given a vector x = (x,:j=1,...,n) such that z X, =k and 0 < x,6 <1

J | j 3 Jj -

for all j, define

n n
ZLP(X) = min 121 JZ] dijylj

VT TEENNNTW W W W W WV - NS W el T NN R

n
J§1 yiJ=1 for i=1,...,n

OSyi <x, for i,j,=1,..,n.

JJ
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Note that 2, p* min zLP(x)
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0<x, <1 for j=1,...,n.

0
»

1%
)I *
’
n

The following lemma is well-known in the k-median literature and is easy to
prove.
Lemma 2 An optimal solution y = (yiJ:i,j = 1,...,n) of 2 p(x) is obtained as

follows. For each i, sort the values dij' j=1,...,n, so that

95,000 % Yug,00) % Yy (1)

34 (D) 3 (D)
p

and let p be such that § x, < 1< ] «x.
h=J,(1)
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6
Then
r Xy for j = J1(i),...,jp_1(i)
1 Jp_1(i) .
e gt h=1§<i) " o d =
g 0 for j = Jp+1(i),...,Jn(i) .

Proof. The program zLP(x) separates for each j into a linear program with

upper bounded variables and a single constraint.

n
Let di = J§1Qijyij where the values of yiJ are those defined in Lemma

n

2. Note that sz < 2 di since this bound is derived from a primal feasible
i=1

solution. This bound will be used repeatedly in our proofs where it is
computed for the vector x defined by xJ = k/n for j=1,...,n.

The dual of the LP relaxation is

T ou - )
(6) 2z, , = max u, - v, - kw
LP jsq 1 j=1 J

u, - t. <d., for all i,}j
i i

n
t., - v, -w <0 for all
§1 o )

t 20 for all i,j.

13'Y3

For any given vector u = (u;:i=1,...,n), define
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¥ for j =1,...,n,

n
(u) = ] (u, -d
i=1

°] ij

n
where a* denotes max(0,a). Let zp(u) = ] u, -k max py(u).
i=1 Jjs1,...,n

Lemma 3. p 2 zD(u) for any vector u.

2L

Proof: It can be checked that, for any given u, a feasible solution of (6) is

obtained by setting tij = (u; - dij)+' vy = 0 and w = max
yes

321 oj(U).

.,n

2. The Euclidean model in the plane.

‘This section is concerned with the following Euclidean model: n points
X1,...,Xn are chosen independently and uniformly.at random in the unit square
S = [0,112.  The distance matrix is given by djy = %, - lel for.

1<1i,J<n where ||e|| denotes the Euclidean norm. We assume that
(7 k + » and n/(klogn) » =,
The following theorem was proved by Papadimitriou {[22].
Theorem 1 Under the above conditions,

z;p ~ (.3771967...) n/ /k a.s.

This. result was obtained by comparing Z2;p to the value z, of finding k
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points in X = {x1,...,xn} that minimize the sum of the distances to a
continuum of points in the unit square. Papadimitriou showed that, when (7)
holds, Zip -~ Z¢ almost surely. fctually, he used a weaker notion of
probabilistic convergence, but Zemel [26] showed that almost sure convergence
holds as well. It should be pointed out, however, that the continuous problem
yielding z; is very different from the LP relaxation. In fact, for the LP

relaxation, we prove
Theorem 2 Under the above conditions,
2
z o, ~ ==— n//k a.s.
LP
3/7
where 2/(3 /@) = .3761264, ...

OQur method of proof consists of conjecturing a near-optimal solution to
the LP relaxation and a near-optimal solution to its dual. Then we show that,
almost surely, these lower and upper bounds on 2 p are the same, up to small
order terms. The probabilistic arguments are based on the estimates of the
tails of the binomial distribution given in Lemma 1.

The prnof of Theorem 2 will actually provide a constructive way of
obtaining an upper bound zLP(x) and a lower bound zD(u) on the optimum value
of the LP relaxation of the k-median problem.

Corollary 1. Let xy = k/n for j=1,...,n and u; = /k/n  for i=1,...,n. Then

zD(u) $2zp < zLP(x) and, under condition (7),

zp(u) - zpp almost surely,

>~ . - .
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zLP(x) - 2p almost surely.

In addition, in [22], Papadimitriou gives a heuristic which almost surely
provides a solution with value 2y ~ Z1p- The complexity of the heuristic is
O(nlogn). Combining this result with the fact that zj(u) can be computed in
linear time, we have a very fast procedure which will almost surely

(i) find a solution with a value close to the optimum,
(ii) prove that the value of this solution is within .3% of the optimum.

Finding the exact optimum is much more expensive as will be shown in

Theorem 3. But first we give the proof of Theorem 2.

Proof of Theorem 2. To obtain a probabilistie upper bound on z p, We are

first going to consider the LP solution
xj = k/n for j=1,...,n

n

and the values of y., as defined in Lemma 2. Let d, = z d..y.. for
ij i j=1 ij7ij

i=1,...,n. We must get a probabilistic estimate of di for i=1,...,n. Let

klogn 1/3 1 172
€ = (——HE—) , I = (E;(T:ET) and let Sr be the square [r,1—r]2. We show
first
2
_£°n
k.
(8) Pr(d; 2 3—5—5 (1+0(1)) | X; e 5.) s 2 9
H_ggn
7ok
(9) Pr(d; 2 TLL/% (1+0(1)) | X; £ 8,) < 2e

If )(.l € Sr’ then a circle C.l of radius r centered at X-l is entirely

contained in SO. The number N of points lying in this circle stochastically
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dominates the binomial B(n, nrz) (since X; e Ci): We define independent

random variables HJ, J=1,2,...,n as follows:

Let

. diJ if XJ € Ci
J 0 otherwise.

We note that E(W,) = 2nr3/3 (j # 1). If N 2 21 then d,

E g =]
[

A

SI|Ix

ne-1o
=
e

3=1

by Lemma 1,

-5 nnr

IA
(4]

Pr(N < fE]) = Pr(N < (1-e)nnr2)

Furthermore, if wj = wJ/r e [0,1], then by Lemma 1,

2 2
_E (n_”an

. 2
1 Wy 2z (1re)(n-1) ggﬁ—) <el 3

Pr(
J

ne~19

and (8) follows.

To prove (9), we note that if X; ¢ Sy - S,

quadrant of a circle centered at X; with radius 2r and contained entirely

within S,5. The area of this quadrant is n(2r)2/u and we apply the same

method as above with E(W) = Mnr3/3.

We are now ready to bound 2 p-

By Lemma 1,

-
‘.

N YL R R A TS TRUUE S TR I TP T I TR T T S D P S s I S -~ AT S AT R R ST R NNLINL L T I NI AR
N AN - Lo A N ,..'(r\_f e AR ¢ ._ ,.-_ N 0, \\.- R A T e A

we can at worst find a
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2

2 -% n(1-2r)°2
Pr{|Xns | < n(1-2r)<(1-¢)} < e

and thus
{ ( 2 2 ‘ 2, 4 )} -2—;2-n/k
Pri{z, . 2 (1+0(1))((1-2r)“n + (1-(1-2r)°)n < (2n+1) e
LP 3/kn 3/kr
giving
2n
(10) z . < (1+0(1)) almost surely.
LP 3/kn

To obtain a probabilistic lower bound on 2 p» We consider the dual

problem (6). Let u; = r for i=1...n. Then by Lemma 3

n n
(11) z 2 u, - kmax { § (u,-d, )"
e 4t 3 i§1 174y7")

For fixed j, conéider-random variables Ui = (ui'dij)+‘

Setting u; = r we find E(Ui) = “; for i #+ j and xJe S, whereas these

values decrease for points Xj € Sy-S.. Rescaling U to (0,1] and applying

Lemma 1 to XJ 3 Sr we find

2
n 3 -E-n/k
Pr( ) U 2 (1ee)35) < e ?
i=1

1)

and thus for k = o(logn

we have

n 3
Max () U)) s (1+e)B3= aus.
J i=1

giving
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2n
3/kn

(12) 2,200 - (1+€)kn1r3/3 = (1-0(1))

a.s.
Combining this with (10) yields the theorem. 1

One might expect then that an LP-based branch and bound procedure

performs well, since z;p provides a good bound. However, we can prove

Theorem 3. Assume k/logn + = and n/kzlogn + @, )

PR
-

Then there exists a constant a > 0 such that a branch and bound procedure

2
e
[
L)

Te
I
)'-

that branches by fixing a variable Xy to 0 or 1 at each node of the search

tree which is not pruned and uses the LP bound to prune the search tree will
k

‘.'J.A. Ly
,j_

AR A
AL X

almost surely explore at least n®® nodes.

Wy ¥
NAS S

Jws
ej.ﬁf¢k
S b

R
r Y
l:'i' o

Proof: Each node of the branch and bound tree is associated with two sets J,

-.‘ -{ ’
aﬁ

and J; where J. = {j: X is fixed at t in the associéted subproblem} for

WNNN,

1

s
»
)

t=0,1. Let ZLP(JO’J1) denote the LP bound computed at this node, i.e. the

2

value of 2 p when we make the restriction xJ = t for Jedy, t=0,1. We prove

i F

the theorem by showing that for some constants 8,y > O (to be determined) the

i
s

s
1 3

following holds almost surely:

e g 0"
,‘:{::," 'I:I,‘
I

(13) For any J.,J., < {1,...,n} such that

0’1

h ]

[N 4

\',';'.'”;'r
IS ‘1'

Jg 0 Jdy =9, |3 ] < en/klogn, [J,]| < vk, we have

. e X 8
‘PAES
Yy
'-.’4.'-;"'."4.\

n
ZLP(JO’J1) < .3769 ;:—

K

4

." v .1 v
Wy'a]
X"

u~l-..
AR
a a ? a

(o T )
s‘:s' S

i

,
»

IO" ]

Q\‘l
'...'.-"
‘-_-‘_.-... -.."._‘-‘\:..‘- .‘-'.‘-...- \!‘\““- W \-)\-.\-
N A e T T

‘I..‘- Se e N %
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O
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o

For then we almost surely have to branch at every node in which

PO A

T
o~
LA

J.| € 8n/klogn and |J,| < vk even if we have an optimal solution of the
0 1

4
' Al

integer program as our current best solution - by Theorem 1.

vy
%
»

o

This implies that the algorithm must explore at least

A
L

5}

\
e
B

Tt

*" P

d -
1

o

3

(1) (Lsn/klogn] + Lykj) - Y10k e

Lk}

-

Lt

SO

AT
Since B8 can be chosen arbitrarily close to 1 the theorem will follow. To )

o
£l

AN
A

verify (14) imagine that setting Xy = 0 means branching to the left and

<
2

2’
a

Cant
LN

setting Xy = 1 means branching to the right. (13) implies that our tree

XA,
(XA

)
LN

contains a copy of all possible paths which make Lykj right branches and

L

~rf'
Y

A
[3

Lsn/klogq] left branches. The number of such paths is precisely the left hand

AL
oy

P
AN
b
‘n'.- f_-'f_ ”

0N

side of (14). .

b

Let F denote the family of such paibs Jg191-

A
ARIE
s

AP A

Thus let Jgrdq € {1,...,n} be disjoint, J=4(j¢ Jg v Iih

n= |}, and k = k-|J1|. Consider the following solution to the associated

',
A

N
hy

TR I -
v '{v }'\’_\{ !’.I'ir'"
P g

SN L

linear program.

2

o

2
N A
Srh ]

(o if J e Jy
Xy = 11 if j e J,
k/n if j e J.

The values of yiy are then defined as in Lemma 2, but only using j e J to e

‘l:l? ]
5]

‘L':."

¢
(A
.

.. ‘
. ."" Y
- . -
s H 5

.

form the sequence J1(i),12(i),...,J_(i). This choice of Yij is feasible g&#&
n

although usually not optimum. However this is sufficient since we only need !E;,

AN
S
%A

2
~
2!

to compute an upper bound on zLP(JO'J1)' We can assume w,l.o.g. that

~-
[
Lol

[Jo] =|8n/klogn| and |9,] =lak|. Let e > 0 be small and r = and

(1-¢)nk
proceed as in the proof of Theorem 2, defining variables Wq,W,,...Wg for each

"f

7z

1

5
,\"ﬁ
A/

A

5‘_‘- )
¢

i. We find that for ¢ < } and n large

[4

‘
VA
[ A

[4
<,

¥
LY

4
)
<

;3qf
el A

»
b
P
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Srg
DR
70
A% _d{

PR
n
™
N
=]
. N

K Pr(z, o(J.,d,) > 28-(1+ 3¢)) < (2n+1) e
: LP*7 0’1 -
3vmk
'
& Since |F| < pBn/klogn + vk o a4 e
. LN
Y i
oy
. P
N Pr(3(J,,d,)eF: z, (J,d,) > 2B (1 + 3¢)) < a3
< o’ LP*70'1 - e
\ 3k .k‘kﬁ
- T
- 2¢%n o
. ok wed
i (2m1)n8n/klogn + vk e 9k ’:‘4;:
;‘ el
:2 Taking 8 = e2/5, y = ¢ and e sufficiently small that 2(1+3e) < .3769 f\
< 3/n(1-¢) :}'ﬂ
= yields 28
& 2t
n e
2 max {zLP(JO,J1): (Jgedy) € F} < .3769 ;E almost surely. Eh::
d R
: . i
Any a < y can be used to give the theorem. sy
: BRR!
.‘l )N"-'.'
y 0 23
» ) ":-’.
b e
3. A Graphical Model by
3 oy
M This section is concerned with the following graphical model. Let G be a Eﬁsﬂ
Y
‘; random graph with n nodes, where each edge occurs independently with SES§
L}
probability p. Let X4y...,X, be the nodes of the graph and diJ the minimum g::!
¢ RN
: number of edges on a path joining X; to xJ for 1 <1i,j £ n, where the jxjs
<
Q minimum is taken over all paths joining X; to XJ. Thus diJ is the shortest ﬂé&s
|} in¥a
vy
distance between X1 and XJ, assuming that all edges have length one. :gg:
- \.r‘.u,
"y Let q=1-p and b=1/q. The main result of this section is the following :2§E
3 AR
b 4
- i
B R R A A SIS
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g{ theorem.
Theorem 4
P
&N
2; (a) Consider (1+¢) logbn <k <sn, where € >0 is fixed.

(i) If n1+8 p+ = for all § > 0 fixed, then z;p = I p almost surely.

NJ

:ﬁ (ii) In general, we only have %ﬁﬂ Pr(zIP = zLP) = 1

é (b) Consider 2 sk <logn and p min(1,kp) 2 ﬁgﬂﬂ, where ws=. Then

\ 2., -2
- e LP < = almost surely. (Note that the condition in a(i) is

. ZIP 1+e

" satisfied.) In addition, if we let kp+a, 0<a<= and

-

’; p*8, 0 < 8 < 1, where a and 8 are fixed, then

{.Q .

.-1 4 - 2 + Qa L.;'P"
b IPZ LP . 1-(1-a) a almost surely, Qﬁn
- 1P 1+2° e
- X
ﬁf . s
- where a = e if B=0 and (1-8)'1/3 if 8 > 0. :m
\l (..
” Z - -
A 5S¢
': t;l f:
Y P S . t o 5

ire (=fl-2) & :
[+ a®

Q)
P4

4 - - = - =

.

4

- _ —> p
\“ 0 1 of = &w\ h,\
- m-pou
Ny Z1p~%Lp

- Figure 1. ———— as a function of kp when 2 < k < log n.

» 2 b

)y 1P

Cal

-

~ Proof of Theorem U4(a)

5

(i) This part of the theorem is a careful phrasing of a known result and is

easy to prove. As d 2 1 for i+j, we must have

LRy

ij =

3 ¢

’,

‘ (15) k

v z 2 2z 2 n-K.

) IP LP

2
9 7

! \_.:
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o \.‘Isa\.\‘\__\.'_.\.-‘..r__ \.r\. T a7 AN RN AT A AN Y N et . = TN R > X :
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(i) follows from (15) if we can show that
Z1p = n-k almost surely.
But zjp = n-k if and only if there is a set K < X, |K| = k, such that,
for any XJ e X-K, there exists X; e K such that X; and XJ are joined by an

edge of Gn(p), i.e., K is a dominating set.

Let m = F2/e Tand K, = (X 4, q0eees X} for i=1,2,...m.  If none
of K1,K2,...,Km are dominating then one of the following events occurs:

Eg = {31 <rss <mand X; e K, such that X; is not adjacent in Gn(p) to
any vertex of KS}

m = -
E; = ;,F, where F, = (3x, e x

ncs

. K. such that X; is not adjacent

J=t

in Gn(p) to any vertex of Ki}

Now

IA

Pr(EO) m2k (1-p)k

m2kn-(1+e)
2 logn
m_logn as logyn < 428

n'*€np

A

o(n-(1+s/2))

by assumption.

Furthermore,

m
Pr(E1) in1 Pr(Fi) since the F; are independent

((n-km)(1-p)K)™

A

C e e
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Iflf{
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and (i) follows.
(ii) Pr( Ky is not a dominating set)
s (n-k)(1-p)¥ < n"¢ 4 0. 0

Our proof of Theorem 4(b) will use the next two lemmas.

Lemma U4 Consider 1 < k < logbn. Assume p min(1,kp) 2 91%52, where
W+, Then,
K 2.
zrp = (1+0(1))(n-k)(1+q") almost surely. .
L4

.

Proof: For K c X, let N(K) be the neighbor set of K, i.e.

n

N(K) = [XJ e X-K: there exists an edge joining XJ to a node of K}.
We have

Z

p 2 min [IN(K)I + 2(n-k-|N(K)|))

lKI:k

= 2(n-k) - max [N(K)].
|K|=k CT

We prove the lemma be showing that

(16) lme [N(K)| = (1+o(1))(n-k)(1-qk) almost surely, and

N K|=k

Fj (17) zpp = (1+0(1)) |min (IN(K)| + 2(n-k-|N(K)|)) almost surely.

4 = R
-; o
‘. : . . e aters K
3 Consider a fixed K < X, |K|=k. The quantity |N(K)| is distributed as :t"i‘

: X
Li B(n-k, 1-qk). Thus, by Lemma 1, for any small € > O N g

2 k
Pe[[N(K) | < (1-€)(n-k)(1-g%)] < et (n-k)(1-0)

.I 3 .. ".‘. ’*

R O S U L O N G L RGN SR R S ST ST AT A
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K - %ea(n-k)(1-qk)
Pr[|N(K)| 2 (1+€)(n-k)(1-q)] s e .

Thus we have

-2 (n-k) (1-0%)

(18) Pe[ max [N(K)| < (1-e)(n-k)(1-q%)] <
|K]=k
12 k
- 3¢ (n-k)(1-q")
(19) Pr[ max |N(K)| 2 (1+e)(n-k)(1-q%)] < (Rle 3

IKI:k

To obtain (16) we put ¢ = 2(klogE /(n-k)(1~qk))%. We can use

(;] < | ES ]k in (19). Then the right hand sides in (18) and (19) both + 0

sufficiently fast. Thus (16) is proved, provided that ¢ < 1.

We consider two cases. Let 0 < a < 1 be a constant.

kp 2
k (1-p)$ = [a-pVP] T < (.% P < 1okp + ngl_ ..

ghen - kp £ a, @0 = <
So & < klogn

g = s . " 0 since logn/np » O.
(n-k)kp(1 - 5 ) .

n
-a EE k log K

kp ¢ 7% ¢

When kp > a, g¥ = (1-p)K < &~ 1. S0 fFe——F—0n.0
logx (n-k)(1-e ™)
since _;g_ + 0 when ¥ » =,

This completes the proof of (16).

To prove (17) it suffices to show that, almost surely,

(20) every node in X-K; is joined by a path of length < 2 to at least one

XY

node of K, where K1 = {X1,X2, K

The events

A(jY) = [XJ is joined to K; by an edge}
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B(J) = {XJ is joined to Ky via a node X; # Xyp X; & K4}

i - ..
’ LN

are independent for fixed j because they have no edges in common. :{'-

e
)

I : f..-"‘.

k ?"\"\

' Pr(A(J)) =1 - (1-p)" = pg, say

| Pr(B(J)) = 1 - (1-pop)-k-T,

: Hence, if N is the number of nodes not within distance 2 of K,, then

: Pr(N > 0) < (n-k) (1-p)¥ (1-pyp)n-k-?

: < (n-k) (1-pgp)™"

| < ne~(n=1)pgp

E If kp 2 1 then pg 2 1-e~! and so

: /2 . |

_ Pr(N > Q) < n using p 2 wlogn/n.

: y 202 kp

If kp < 1 then (1-p) < 1 - kp + —52— and hence p, 2 5 and then

: Pr (N > 0) < n~v/2 using kp2 2 w logn/n.

)

§ This proves (20) and therefore (17) and the lemma. i

)

'

!

; Lemma 5 Consider 2 < k < logbn. Assume p 2 Q—L%EE and kp2 2 % where

; w -+ o, Then

|

!

' z p = max(n-k, 2n-nkp(1+0(1))) almost surely.
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Proof: Given a node X;, let Ny(i) = {XJ: dij = 1} and Ny(i) = {XJ: dij = 2}. "‘”
First we give probabilistic estimates of |Ny(i)| and |N;(1)|. We will
show :
(21) min |N1(i)| = (1-0(1))np almost surely, AR
i Sl
'-'xd'_.l'
B
IR
(22) max |N,(i)| = (1+0(1))np almost surely, and B A
i R
(23) min |N2(i)| 2 min( E, (1-0(1))nq) almost surely.
i .
| b
Note that |N;(i)| is distributed as B(n-1,p). So, by Lemma 1, j:.";::._
Ford
bk
2 .-‘.‘-'.'
=1 - N
Pr( min |N1-(i)| < (1-e)(n-1)p) sne? € (n-1)p . ;:L:‘:}‘
i ) IS
1 e
' -3 (n-1)p e
Pr(.mgx |N1(i)| 2 (1+e)(n-1)p) < ne . j:jfr;
L ';.;'.'t-:{
Putting ¢ = 3(logn/(n-1)p)% yields (21) and (22). f}:‘:-::-
N
Now consider |[Nj(i)|. We will assume p » O (otherwise N4(i) is a :‘-”’:’
4 N
dominating set by Theorem 4(a), and (23) follows). Conditional on [N, (i)], oo
ENCSY
the quantity |N2(i)||N i(s)cliistributed as B(np,py), where ny = n - |Ni(i)] - 1 ::.-:-::::
j. .‘:.- ...\
and p, = 1 - (1-p) T By Lemma 1, SN
AN
-3 enyp, R
Pr{ min IN,(D)] s (1-e)np,) sne . bty
i Ay
S
Set € = 3(logn/n2p2)*. We have to show ¢ < 1. Note that n, = (1-0(1))n and i.-— -
_ 2 :\;\:;\
Py = 1 - (1-p)(1*°(1))"1p 2 1-e (1+0(1))np almost surely. _’_:f'_’_::::
T

.'4'
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If np2 2 § > 0 where § 1is fixed, then

8—2-5 log n - 0.
(1+0(1))n(1-e"%)
If np2 = o(1), then
2 2

e . logn 1 ( log n ) ~0
y n2p2 ~ logn np )

So we have just shown that, almost surely,

min [N,(1)| 2 (1-0(1))n,p,.
i

Next we will use the fact that kp2 2 ﬁ to show n,p, 2 E almost surely.

If np2 28, O0<8< 1 fixed, then almost surely

nop, 2 (1+o(1))n(1-e-6) > E for k 2 2 and § close enough to 1.

2 2
If np2 <8 <1, them 1 - e-(1+o(1))np 2 np2(1 - gg_ ). So

§y »

nyp, 2 (1+o(1))n2p2(1 - %) 2 (1+0(1)) EE (1 - 5) 2 almost surely.

xIi=

This complete the proof of (23).

Now we are ready to get a probabilistic estimate of 2z p. First we obtain

an upper bound by considering the solution

(24) xJ = E for j=1,...,n and Yij defined in Lemma 2.
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Let & = min |N1(i)| be the minimum degree of G,(p). Note that, if
i

vy
hY

82 E -1, then z p = n-k. For, using the solution (24), we have uj;:'
P
d; = E d..y., = 1- X for i=1 n. On the other hand, if & < = - 1 ;ﬁﬁﬁ$
i iyij n reecol ’ k- b NG
3=t "y kKc n e
then di ey § +2 H( K" 1-8). (yij only takes positive values for points }Ab
o
Xy at distance one or two of X; since, by (23), the number of points at jb;%ﬁ
Tl
distance 2 is at least min( E, (1-0(1))nq) which is more than the P
n L PN
k- 1 - § points needed.) Therefore Z p <n z di < 2n-ké, almost surely. e
i=1

To obtain a probabilistie lower bound for 2z p we consider the dual bound

given by Lemma 3. We put u; = 2 - % for i=1,...,n and let A denote the

maximum degree of G, (p). Then i

Zp 2 n(2 - %) - ka(t - %) = 2n - (1+0(1))nkp almost surely.

o

‘.fz ]
2 d

This completes the proof of Lemma 5. 0
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Proof of Theorem #4(b)
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It follows from Lemmas 4 and 5 that
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Setting a = (1-p)'1/p and kp = a, we get
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It is easy to check that the maximum of this function is achieved when p + 0
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& and a = 1. Then its value is Tre - 4 Poa
o *e ra
¢ An interesting range of parameters which is not considered in Theorem 4 «
. is the case 2 <k < logbn and 2 m_l%gg > kp2 where w +» =, In this "{‘k
. : - Y
N range, the expressions for 21p and 2z;p are more complicated than those found .
™~ Zip - 2 NI
in Lemmas 4 and 5. However we conjecture that —lE;———&E + 0 almost surely. SN
LP
In the range covered by Theorem 4, it is easy to identify conditions
Z,n - 2
under which the ratio _lf%r__éﬂ is almost surely bounded away from 0. For
LP
= example, consider
. (25) e <kp<1/e¢, k22 and
N (26) (w logn/n)”2 <p < l-e
al
’ where w +» = and 0 < e ¢ 1 1is fixed. .
- 2
: Then klogb = kp (1 + 2+ 24 . ) <X <1 5o Kk<ilogn for n
: 2 3 1-p e2 b
- large enough and, by Theorem 4(b), there is a fixed value f(e) > O such that
» 2 -2 .
i -(27) L LP 2 f(e) . almost surely.
Z1p
f: In addition, we can show that, under these conditions, a branch and bound
>
A algorithm based on the LP bound z;p almost surely requires close to complete
\
-
enumeration. _
] :,‘-‘\:
. N
x v
; Theorem 5 Assume (25) and (26). A branch and bound procedure that branches fo;
> - ‘;'.A
by fixing a variable Xy to 0 or 1 at each node of the search tree which is not : "
X pruned, and uses the LP bound to prune the search tree, will almost surely
expand at least n(1'°(1))(k'2) nodes. (The number of feasible sclutions of
‘!
® the k-median problem is (E] NS
ol
-
L
- Proof: We first note that, under the above assumptions, e < klog b < —
. €
and therefore
2
(28) e~ Ve ¢ qk <e®.
.
<
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In addition, the assumptions of Lemma 4 hold and k = o(n1/2) so that
(29) Z1p 2 (1-0(1)) n(1+qk) almost surely.
Let zp(Jq,Jq) be the LP value of the subproblem where Jj = {3: Xy is

fixed to 0} and Jy = {J: Xy is fixed to 1}.

Let o<1 and 8>0 be fixed. We prove the theorem by showing that, for 8
chosen small enough, the following property holds almost surely.
(30) For any J,,J; c {1,2,...,n} such that J,nJ, =0, [Jgl < Tenl and
[J4] < Takl,
(31) ZLP(JO’J1) < z1p-

This implies that the algorithm must explore at least
(32) (anlr:k:ak1] > (SE) ak _ n(1--0(1))01(

To verify (32), imagine that setting Xy = 0 means branching to the left

nodes.

and setting Xy = 1 means branching to the right. (30) - (31) imply that any

tree contains all pbssible_pafﬁs which make T[akl right branches anq fanl
left branches. The number of such paths is precisely the left hand side of
(32).

We now turn to the proof of (31). As increasing Jgy or J; only serves to
increase z;p we can restrict our attention to |J0| = [8nl and |J1| = Takl.

Using Lemma 1 we can easily prove that the following holds almost surely
for G,(p):
(33) Je {1,2,...,n} and |J| = fak] implies

IN()| 2 (1-0(1))n(1-¢"%) (see (18))

Furthermore, it is easy to see that
(34) diam (G,(p)) = 2 almost surely.
where diam refers to the diameter of G,(p).

Indeed Pr(there exists i,j ¢ {1,2,...,n} such that i,J are not joined by

a path of length 2)
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(3) (1 - p2)n-2

2
n2e-(n-2)p

n2e4blog nXn-2)/n 0.

IA

[72)

A

()

Thus (34) is proved (Pr[diam(G,(p)) = 1] = p + 0) To obtain an

upper bound on z;p(J,,Jq) let

0 if Jed,
k=g if Jed,
Y if 3fdgud,
where vy = (k-lakl)/(n-[8nl-lakl).

The values for yij are then chosen as follows:

0 jJ=+1i

ie J1 I I 1 and yij

J

ie N(J1) DYyt 1 and Yq 0 jet
where t is a node of J, n N(i).
i €Jy uN(J,): the values are as defined in Lemma 2.

With this solution we find, using (34) that

d{ = 0 if 1eJ,
=1 if 1 e N(Jq)
< Y(G-si) + 2(1-7(6-si)) if 1 ¢ J1UN(J1)

where s, = |N(i) n Jols & 1is the minimum node degree and 4 is the maximum
node degree in G,(p).
To compute an upper bound on 2 py We will distinguish between the cases
vy6§ € 1 and v6 > 1.

First assume that vy§ > 1. We use the bound
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=na+ 8 k;[:k]) n + o(n).

Since kp is bounded above by a constant as a consequence of (25), we simply
choose 8 small enough to get our bound on z;p. Then (31) follows from (28)
and (29).

Now assume that yé§ < 1. We use the bound

Q.
IA

v(6-s;) + 2(1-7(6—81)) = 2= v§ + ys;.

A

IN(JJ) ] + (2 - v8 + ys,)
! i£J1u%(J1) t

INGID| + (2 - ¥8)(n = NI + vald ]

(2-y8)n - (1-YG)|N(J1)| + yA|J°|

1A

fak](1 _ k-Takl p) + 8(k-Takl)

-8 -8 pjn + o(n)

[1+4q
where the last inequality follows from the relations

IN(J,)| 2 (1=0(1))n(1-q 1)
k-lakl

¥8 = (1+0(1) S p
A = (1+0(1))np.
Therefore
fak]

Zip = Zpp 2 [q ((1-p)m-1+mp) - %?%(1-qr°k])]n + o(n)

where m = k-Takl. Note that yé§ ~ 1—T§ <1 implies mp < 1.

Next we show that S, = (1-p)m - 1 + mp is bounded below by a positive

constant. This will imply that Zip - 2p ? 0 by choosing 8 small enough.

We assume that a is chosen so that o < 1 - E.

This implies m 2 2. Now
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Sp = Spoq + pO=(1-p)™T)
2 Sp_q + P(1-e°(m'1)p)
m-1
-(i-1)p
28,4+ p (1-e )
LS
2 p? + p(m-|m/2] ) (1-e{Lm2] -Dp).

If k is fixed, then p is bounded below by a constant as a consequence of
(25). Therefore S is bounded below by a constant.

If k + =, then m ~ (1-a)k. Thus mp and hence %nis bounded below by a
constant using (25).

This completes the proof of (31). Note that (32) and the condition

-0(1))(k-2)

a < 1-% imply the bound n(1 announced in the statement of the

theorem. a

In [4], a different graphical model is associated with the variation of
the k-median problem knoﬁn 'as the k-plant location problem. The k-élant

location problem is defined using two sets X = {Xy, ..., X } and Y = {Y,, ...,

Yp}. The guantity dij is defined for each 1<ism and 1§35n. The problem
consists of finding a set ScX, |S| = k, that minimizes ‘21 mig d; |
A k-plant location problem arises from a graph G b;-degining X as its
node set, Y as its edge set and dij = 0 if XJ is incident with Y;, 1
otherwise. (The problem is to find k nodes that cover the maximum number of
edges of G.) It is shown in [#] that
21p = Z1p almost surely

when G = G,(p) is a random graph with  O<espsi-e, ¢ fixed, and

k < n%, a<1/6 fixed.

4., A Tree Model

This section is concerned with the following tree based model: we are
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n-2 ﬁgkf

given a random tree T, with node set X = {X1, ceey Xn} where each of the n oY
PACN
TNl
- different trees is equally likely to occur. The distance d;j is the number of fatds
b
o
edges in the unique path from Xy to XJ in T,. This section contains a :ff.‘;‘g
probabilistic result (Theorem 7) and a deterministic one (Theorem 6). 4 :ﬁsiv
DNV

Kolen[13] proved that z1p = zp for-every SPLP defined on a tree. For :
LT
the k-median problem, this equality does not always hold as shown in Theorem :tjif
'-'-‘::F
6. In fact we show in Theorem 7 that, for random trees on n nodes, the number :;ﬁ:ﬁ
eYs
of values of k such that Z p # 21p is almost surely at least cn, for some ferad
constant ¢ > 0. :’;j;
R
e
:.n_..-,'.
Theorem 6 i
-1 oA
(a) For k = 1or k2|5, zpp =z p for every tree on n nodes. e
e :.'
(b) For 25k<[ﬂ§lj, and n # 8, there is a tree on n nodes such that Z1p ﬁgkﬁ
* sz . ) =
' Z1p = ZLp k-1 PR
(c) There is an infinite family of trees such that = " - AN
: ~ | IP RO
It would be interesting to perform a worst-case analysis of the k-median ::::‘
- OO
problem and its LP relaxation on trees. We conjecture that the ratio %—l —

found in (c¢) is the worst-case bound.

Proof of Theorem 6: For the 1-median problem, it is well-known that 21p = ZLp

for every choice of dij’ 1< i,J £ n. For example, this result appears in
Mukendi [18].

When k

[\

[%], Zip = 21 p = 0 - k follows from the fact that every tree

on n nodes has a dominating set of cardinality at most [g], (A tree is

bipartite and a color class dominates it).

To complete the proof of Theorem 6(a), it suffices to consider the case

where n is even and k = % - 1. The only trees which do not have a

EAT NN

T e LT e e et e e e R S U N .t W - N AT Y
R N I s e a e - ~ N Ny " - o -
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dominating set of size k are constructed inductively from a path with 4 nodes

by adding paths P; = (v,i, vzi, v3i) where v1i is one of the nonleaf nodes of

b the current tree and vai, v3i are two new nodes. (See Figure 2(a)). From the
construction Zip n-k+1 = g+ 2. Using the dual values uJ s 2 if XJ is a
leaf, 1 if not, Lemma 3 yields Zp 2 g + 2. Therefore zyp = z[p.
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To prove Thedrem 6(b) when.n is odd, consider the tree of Figure 2(b).

W,

Let p = E%l . An optimal solution of the k-median problem is to take S = ﬁ32

. ‘\,\_'

Xy, X, Xy, Xg, ...y Xp(gqy}. Then zpp = 3p - 2(k-1). We get a feasible PO
“w

. . . _ p=k _ k-1 . L

solution of the LP relaxation by setting X, = p-1 and Xyi = E:T for i = 1, LF‘

..y p. This yields

..-_..‘.{.-'.

Zp < (3p° - 2pk - p + k - 1) / (p-1).

k-1
p-1

To prove Theorem 6(b) when n is even, n # 8, we first consider the case

> 0.

Therefore 2Zip - Zp 2

k 2 3. Add ‘a node sz*z adjacent to X2p to the tree of Figure 2(b). Then

it is optimum to choose sz in S and we can also choose Xop = 1 in the LP Fﬁ?t;ﬂ
S,

solution. Removing sz, X2p+1 and X2p+2, we are back to the case where n is E:$§£31
ey,

odd and k 2 2. Now consider the case n 2 10 even and k = 2. Add three ;'\.\ij‘
(\.si_l“..

nodes to the graph of Figure 2(b), namely x2p+1+i adjacent to X,; for i = §7ﬁc¥!
AN

1,2,3. Then 2;p = 3p+3 but there is a better LP solution, namely X9 = 1 and :?)fﬁq
* s
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LSRNy

;";rt
Ny
(XA

,.
o

X =Xy = Xg = 1/3. This yields z;p = 3p + 1.

5
a
X

ey

Finally, to prove Theorem 6(c), consider the tree of Figure 2(c¢). The

s AT

node X; has degree k+1 in the tree. Each branch incident with X, contains b
nonleaf nodes and & leaf nodes where b + », ¢ »+ » and ¢ grows much faster
than b. We denote by X5, ..., X, > the (k+1) nodes of the tree which are
incident with leaves. Then, an optimal solution of the k-median problem is

{X1, X2, X3, eeay Xk}.

2. = (k=1)2 + 2(b+1)2 + 0(kb2) '\.
1P '.::'.'j\
Nt
. AN
where the last term accounts for all the nonleaf nodes. Ignoring the lower R

by
order terms, A
LY
PC Ay
21p ~ 2be. _;:;:.
- '~ -.
To get an optimal LP solution, set x, = % and  x, = EEl for § = 2, {i;,
ceey ka2, &:Eﬁk
’ k-1 1 2 PN
Zrp = (ke1)2 x — + (k+1)2 x (b+1)z + O(kb"), i.e. DA,
LP k k e
k+1 PACAt;
ZLP ~ K be. P <
R
2. 0=2 okl e
IP~°LP Tk k-1 RN,
Therefore 2 ~ 5 = 5 :ﬁ'i;
1P ; s

In the next theorem we consider all the k-median problems defined on a

tree, namely all 1 < k < n where n is the number of nodes in the tree,

Theorem 7 Let Tn be a random tree. There exists a positive constant ¢ such

that, almost surely, 21p * Z0p for at least cn different values of k. i(;gg
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Proof = Consider a random tree T, = (V,, E;) and a fixed tree T = (V,E).
Let velV. We say that T, contains a copy of T suspended at v if there

exists V' ¢V such that

(35) T,(V') is isomorphic to T under a mapping ¢ : V » V'.
(36) there is a unique edge of T, with exactly one end, say v', in V'
and, in addition, v' = ¢(v).

Let m = |V| and a = the number of automorphisms of T. Then m!/a is the

number of distinet labeled graphs on m nodes which are isomorphic copies of
T. We first prove that almost surely T, contains at least (1-0(1))(n/eMa)

copies of T suspended at v.

For each V' ¢V, [V'] = m, let '
_ (1 if (35) and (36) hold,
(V') = { 0 otherwise.

We note that, if V'aV'' # @, then &(V')&(V'') = 0.

Let N= J  &(V")
V'cVn

[V f=m
= the number of copies of T suspended at v contained in T.

Now for a fixed copy of T on a set of m nodes, there are (n-m)" ™

ways of
choosing a tree on the remaining n-m nodes and then joining it to v. Thus
E(N) = (g ) (mt/a) (n-m]n'm'1/ a2
- n/ea.

with Y = (N-E(N))4,

Using the Markov inequality Pr(Y 2 a) < EQY)

E(Y) = Hy and a = Auuu we get the Pearson extension of the Chebychev

inequality.
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Pr{|N-E(N)| 2 xuu&} <=y
A

In terms of factorial moments uy is given by

y
wy = oupy] - Bupq) ugg) + Gugfuge) - 3uq)

+

6ug3) - 12uqqu2) + 6upd]

+

Tugz - dud)

M

where H(i] is the ith factorial moment.

n! 1. i (n-im n-im-2 i
M = T G0 R eim)
m!) (n-im)! n
We find
5> -2m/n + o(‘,],‘z]

Hl2] = M1 ¢

-6m/n + o(n‘LZ]
¥[31°F ¥[1) ¢ :

-12m/n + 0( 2)
“[4)] = ¥y

In the expression for uy above, the first row is the powers of nu. When we

evaluate this row we find that terms in 1 and

disappear simultaneously, leaving a term in

1/n of the exponentials

M1

4

0oL,), i.e. 0(nd).
n

Similarly in the next row (powers of n3) the terms in 1 of the exponentials

disappear simultaneously leaving u 3 0(1), i.e. 0(n2).
(1] *'n

are O(nz).

Thus wy = 0(n?) and setting A = ni+le gives

The last two rows
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1

Pr(|N - (1+e) ——]| 2 n3%) = o o
n

e a

).

Now we consider the fixed tree T given in Figure 3.

AAT A A TS A Y A BRI P

Figure 3.

Let S be an optimal k-median solution in In.' We will let k increase from 1
to n. Consider any copy of T suspended at v contained .in T,, say (V',E').
K. This .implies that there exists a
K such that for k 2 K, |V'nSk| is a nondecreasing function of k which goes

Note that, if |V'nS [ 21, then v e 3

SV PSS TEBRAY T T e s s RPN S AT Y e

from 1 to 15 ( = m).

;: Let zpp(V') = 'Z ' min diJ . When |V'nSk| = 3, an optimal set
e ieV jeSk

E V' n Sk is {v, Xy, X2} with z;p(V') = 14. However, consider the fractional
~

: solution x4 = Xy = X3 = Xy = %, xJ = 1 for the variable associated with node
S

' v, and xJ = 0 for the other nodes of V'. Let yij be defined as in Lemma 2 and
% 2 p(V') = ieV'quyiJ . The above fractional solution yields z;p(V') = 13.5

and therefore, when |[V' n Skl =3, z1p > Zpp.
Since T, contains almost surely at least (1-o(1))n/m!a copies of T
suspended at v, there are at least as many values of k for which 21p > Zpp-

a
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5. The uniform cost model.

In this section, we look briefly at the model where the dij's are drawn
independently from the [0,1] uniform distribution, 1s<i, j<n.

Here we do not assume d;; = O, dij z dji or diJ < dik+dkj’ as we did in
the other models. The quantity dij is interpreted as the cost of assigning Xy
to XJ'

The main result of this section states that, when k 2 n(e-1)/e, then
Z1P7%Lp . k-1

21p = Zpp almost surely, and when.k = o(n/logn), then z; 5k almost

surely. The analysis is made possible by the fact that, in those ranges, the ;ﬁ5£3
k-median problem is almost surely trivial to solve exactly or approximately. E%%E
{When k 2 n(e-1)/e there is an obvious optimal solution, and when Eijf
k = o(nlogn) every solution is close to optimum.) ;j '

’

Theorem 8 . . _ . t WY,
. {

o -

(a) Suppose k = o(n/logn). Then o
.\}:
zip ~ n/(k+1) almost surely 3%\2‘
zip ~ n/2k almost surely. .f”ﬁ
NIIND
(b) Suppose k 2 (1+0(1))n(e-1)/e. Then 51@}'
At
Zip = Zpp almost surely. ;tf:
N ]
e
Proof = Let S be a fixed set of size k. If we take x; = 1 for jeS as our S
solution to the integer program, then the d; = min diJ are independently Sif
Jes N

distributed as the minimum of k uniform [0,1] random variables, i.e.

B

Pr(diza) = a¥ for O=sac<t,

LN
A
4

~
LR/
i’

:’/'{'

s

and hence E(d;) = 1/(k+1) for i = 1, ..., n. We first consider

el )
e

)
v
A

¢
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k = 0(n1/5). Applying Lemma 1 to D = dq + ... + d;, we have
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-ezn/3(k+1)
3 Pr(|D-n/(k+1)| 2 en/(k+1)) < 2e .
' - —e2 1/3
E Now put € = n 1/5. In addition, (E]e e n/3(k+1) = o(e™™ 7)), so zrp -
h n/k+1 almost surely.
)
176 _ S (=i,
i Assume now that k/n + =, Then w = (k logn) . Set
si={di if d; < w/k \-}:s
; 0 otherwise k;
: 'C‘-
I -
KX
; and note that E(ai) = E%T (1-(1-§)k(m-1)).: 1:§§%L—n We rescale the §; to E£§;
F [0,1] and apply Lemma 1. 51{
: L.
) n o
I -~—=(1-0(1)) i
, n o 2w’ N
) Pr( § &./(w/k) < (1-=) n E(8;/(w/k)))s e NG
, it o 3
4 :-":-
; BRI
i "As §; < d; we deduce =
: -—5(1-0(1))
\ 1-0(1) n 2w
- Pr(z;p < n we1 ) S () e
;
‘ and hence if k = o(+——)
y logn
. (1-0(1))n
5 Z1p 2 Kt ] almost surely.
; On the other hand, taking S = {1,2,...k} we can show easily that
' -
\ 2
N Z.o S 1+0(1))n almost surely. N
5 1P k+1 ~
. %
’\‘
F N
| Now we prove the second part of Theorem 8(a). We put Xy = k/n as usual. :
Then d; is dominated probabilistically by k/n times the sum of the [n/kl .'._
; o
4 -~
d "
|
5
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smallest out of n independent [0,1] uniform random variables. Thus

. n/k1
' E(d;) £ (k/n) ] t/(n+1) = (1+0(1))/2k.
t=1
o Applying Lemma 1 in the usual way shows that
3
S 2 p < (1+0(1))n/2k almost surely.
’
Q
% On the other hand, consider the dual solution u; = 1/k for i = 1, ...,

(SN
¢ n. Then, by Lemma 3, ﬁtjx
4 ~ L
. PRLA
2 IO
! E g ( )4-) :‘,':.
‘ 2, 2 u, - k max u.-d, .

LP ™2y 8 j=1,...n iz + M

As in Theorem 2, for fixed j, we consider random variables U; = (ui-dij)+.
Setting u, =,l we find E(U,) = —l—. Rescaling the U; to [0,1] and ==
i "k i 2k2 1 -
Y
applying Lemma 1 %;-
S
2 i
n iy + 8 "‘\':}\
n_ 3 2 2e-
Pt‘(iz1 k Ui 2 (1+¢) %) S e .

Hence, if n/k = 83 logn where 8 » =, then taking e = 1/6 yields

n S
k

- k(1+¢) > almost surely
2k

v

LP

PSSRSO R Y0 2SS T e

n
(1-0(1)) 3.

: |

i This ~ompletes the proof of Theorem 8(a).

e.

) Now consider the case where k is sufficiently large so that each point X;

.h

E can be assigned to the cheapest point Xj(i)’ defined by dij(i) =

% min dyy - Then clearly zyp = 2 p.

t j=i,...,n gy

! For J = 1,...,n, let NJ be the number of points X; assigned to XJ jqf!ﬂ

’ < :"_-

v according to the above scheme. Nj is asymptatically distributed according to j%,}g

; ::.". .:':.
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a Poisson process with mean 1; in particular. Pr(NJ=O) ~ 1/e. Therefore

“E({) £ Ng=0}])- n/e. To show Z = |(J: Ny =0} s (1+0(1))3 almost surely

we use the generalized Markov inequality Pr(Z 2 a) < E%%ééll for any non-
negative monotone increasing ¢. We let k = rn1/3] y a = (1+e)g where
£ = n'1/u and ¢(a) = max {0,a(a-1)...(a-k+1)}/k! and note that ¢(Z) = the

number of k-sets S for which NJ = 0, jeS. This gives

n k.n
(k) (1-5)
a(a-1)...(a-k+1)/k!

A

Pr(zZ 2 (1+e)2)

0 ((1+e)7%y.

This completes the proof of Theorem 8. 0

As for the Euclidean and graphical models, we can show
Theorem 9 Suppose k = d((n/logn)1/2) and .k » ». Then an LP based branch

and bound algorithm almost surely explores at least n(1f°(1))k nodes of the

search tree.

Proof = Let 2z p(J,,Jq) be the LP value of the subproblem where
Jo = {j: xJ is fixed to 0} and J1 = {j : xJ is fixed to 1}. Assume that

a ¢ 1 is close to 1, that 8 is large and that a and 8 have been chosen so that

ak and Bk are integer. To prove the theorem, it suffices to show that, almost

surely,

(37) for any Jos Jy ¢ {1,2,...,n} such that Jind, = @,

[J9] < ak and |J | < n-(8-a)k, we have z{p(Jy,Jq) < zpp.

As increasing J; or J, only serves to increase z p, we can restrict our
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attention to |J,| = ak and - |J | = n-(8-a)k. Let L =ak, K=8k and

. _(1-a)k _1-a _ k-L
Y= n-[J I-9,T~ & =~ ¥ °

To obtain an upper bound on z;p(J,,Jq), let

( 0 if Jed
Xy = z 1 if jed,
Y if JtJouJ1.

< ...

IA

cijn' Let t = min{s :

, dijyij'
value of di, conditional on knowing the value of t, is

Consider a fixed i and suppose ¢, < c.
1J, 7 "1,

Js € 1}, Let ¥ij be given by Lemma 2 and d,; = The expected

[ &
Hev-1s

t .
1 t

.t ox(e-nt . -1
KT T 2(Ke ) ifesiy

(39) Exp(d, |t)

-1
Ly 1
-1, =1
Y '21 E%T + vy -ly 1)
1=

eyl DAy e
1 2(K+1)

(40) Pr(t) =

Using (38) - (40), we get the expected value of d;.

Ly

.
Exp(d,) = ———
Powen(§) e 2(k+1)(§)  £21

---------------------
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Exp(d.,) =z —m—— ) - 1y ) -
1 (K+1)(E) [(L+1 [ L ) ( L+1 )]
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large, and for
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Exp(d;) = [ - (F2L ) )] oy

-
é
\
E
|

-1
- 1 ] 1-a+ K-
22 - (g - Ha - B Do)

-1

* 2(T-0)k

E B

E B

Applying Lemma 1 with
n 1
2 p(Jg0d4) < ¢ (1 - §(

with probability at least

to branch for all

L
I
(1. {=edfema) | oL )] (1.0(l))
Ba
-
L2 2 ok e )] (1))

+ o as a -+ 1. Thus, by choosing a close to 1,

(=—)12

Tog © , Wwe get
1 - 1)3)(1+0(1)
_ nB.
1-e 3k logn where B = 1 - %[&-1]2, We have

|9} s ak and [J | < n-(8-a)k with probability at least
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nB
n y(n ~ 3k logn n y(n 8)k n
1- ka)(uk] e 3 €' . 1 since (Bk](ak] < n(a+ ) and ;E—I;;;- + @,

This proves that, almost surely, (37) holds. As a consequence, the number of

branches in the search tree is at least (:;Bk] = n{1-00k

6. Computational Experience

The previous sections provide asymptotic results as n + =, In this
section, we report our computational experience with medium-size k-median
problems for the four probabilistic models introduced earlier. This
computational experience is based on the solution of about 3300 random
problems with n = 50 points and an additional 950 random problems with n = 100
points. The description of these problems is given later.

For each problem we computed zip and 2;p. The value of z;p was obtained
by solving a Lagrangian dual by subgradient optimization as explained in [3].
In the process of computing 2 p, this algorithm generates a feasible solution
at each subgradient iteration. Of course, if it happens that the value of the
best feasible solution generated equals 2z;p, the algorithm terminates since,
then, z;p = 2z p. For most of the test problems with no gap zjp - 2z p, the
algorithm terminated in less than 100 subgradient iterations, due to the above
stopping criterion. If, after 100 subgradient iterations, there was still a
gap between the best feasible solution (an upper bound on z;p) and the best
Lagrangian relaxation (a lower bound on zLP)’ we resorted to branch and bound
to find zrp- When the subgradient algorithm clearly converged to a value
different from z;p, we accepted it as showing that z;p = 2 p. In the cases
where the subgradient algorithm converged to a value close to zpp We used the
simplex algorithm to compute Zzp- This allowed us to settle cases where there

was a very small but positive gap z[p - 2[p.
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Among the 4250 test problems that we generated we found about 3700 such
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that z;p = 2 p and about 550 with a gap z;p - 2z p. Now we give a detailed
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description of these results.
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The first set of experiments involves Euclidean problems. We decided to

=

b
e,

test whether approximating the Euclidean distances had an influence on the gap
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Z21p - 21 p, Since we suspected that data accuracy might be partly responsible
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for the discrepancy between the computational experience previously reported
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in the literature, namely few test problems were found to have gaps ([2], [3],
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that asymptatically most instances should have small but positive gaps. To
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our surprise, data accuracy had little influence except maybe for the

possibility that a very coarse approximation produces harder k-median

problems. (These problems are more combinatorial, often have alternate

optimal solutions and, in our experience, optimality was harder to prove). Lo
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We generated 10 problems, each with 50 points occurring at random in the unit
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square. Then, for i = 1,2,3,4 and 5, we multiplied each point coordinate by
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then computed and rounded to the closest integer. The k-median problem and

its LP relaxation were solved for each 2 <k <10 and 1 <1 <65. For each
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such pair i,k, Table 1 reports the number of problems (out of 10) with a gap
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Kk | 2 3 4y 5 6 7 8 9 10 | Total
i | | (out of 90)
| I
1 | o 2 o 2 2 1 0 o o | 7
2 | o 1 0 0 0 2 0 0 1 | 4
3 | o 1 o 1 0 0 2 o0 o | 4
y | o 1 0 0 1 0 2 0 0 | 4
5 | o 1 0 0 1 0 2 0 VN 4
I I
Total | |
(out of 50) | © 6 0 3 4 3 6 ] T 23
| | (out of U50)
Table 1 Euclidean model with n = 50.
Number of instances with g gap.
The same- two proélems were responsible for all the gaps. The average
value of EIEEEEE over the instances that had a gap was approximately 1.5%

for i-= 1, 4% for i = 2 and .1% for i = 3,4 and 5. Overall, the fraction of
instances with a gap was about 5%. This is consistent with the computational
experience reported in the literature. Clearly, the ésymptotic behavior
described in Section 2 is not felt for problems with n = 50 points. It would
be interesting to repeat the computational experiment for Euclidean k-median
problems with about n=1000 points. Unfortunately our computer budget did not
allow to do this.

The second set of experiments involves random trees. We generated 100
random trees, 50 of them with n = 50 nodes and the other 50 with n=100 nodes,
using the method described in Even [7]. First we assumed that all edge
lengths were equal to 1 in the trees, and we solved the k-median problem and

the LP relaxation for 2 < k < 11 in each tree. For each pair n,k, Table 2

.........................

.

’I‘!TJ'

%z
)

-‘;:‘.'
\‘ *
"J

o an i T 2
rd

‘.{‘n ‘i)
Sy

i A B

l,'

~
7

3

e

AT
oo

’ '.\
ataf o

o
W
e

'l$.l
LA/
-"?l.

/
P

T T
AN
LYY

"
i /,
‘II

T

L 98 4
»
i
"
]

[
A
rd

-y
XXX e
LAV L

:"
e
g,

e

R
'
bt

A
cleevee el
,..'Aw.- a 8 &

N
P/ % Ny
‘/"-‘T *

A

b
\.‘i )
ALY

G
. I".' s
LA

"‘
0,
I

e
7
Fd

t

’

RN
[,
-

»
A}

L)
g
1}
>

, ",
Ea 4
a

?"";‘,’),
d J‘ b ]
(s

a Y
ol
I ] :
P
ZLARIGP |

"

AL

/2,
X
P

o

uls
-'l/

”
¥

T b
PYsAE

AR



v Ly
f: LA
$: reports the number of problems (out of 50) with a gap z;p - Z p- S: N
73 ¥

4.0 "

b
)
k | 2 3 4 5 6 7 8 9 10 1 | Total
Ky n | | (out of 500)
A
!5‘ I
o 50 l o 2 2 o 7 1t 1 1 2 2 | 18
X 100 | 1 2 4 2 2 2 1] 17
e | |
' Total | 1 y 3 ) 7 3 3 3 b 3] 35
RS

B (out of 100) | | (out of 1000) ;:.,
4 e
» o
- 'l"-‘.-
‘ NN
[t -}.:,i 1
- Table 2 Tree model with unit edge lengths. i o
b Number of instances with a gap. ::t$2
e ’ N
r. RO
% S
) e
-~ i 3 o 7
o We also computed zjp and z;p for the same 100 trees assuming non-unit §E¢}
[ ) :{"(':
§ edge lengths. In this experiment, the nodes of the tree were random points in %Fﬁ:
~' > ‘-:\
B the unit square and the length of an edge in the tree was the Euclidean o,
» F;‘—*.
™ distance between its endpoints rounded using the scheme explained earlier with Q’A‘
ié i = 1. The distance between two nodes of the tree was the length of the :: E

unique path Joining them. Table 3 reports these results.
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21 ) .'._'-:.;.-;'

100

Total
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|
I 0
50 | o 2 5 6 3 3 0 3 1
|
|
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| (out of 900) o
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Table 3 Tree model with non-unit edge lengths.
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We did not find a significant difference in difficulty between the two
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tree models. Overall, the fraction of instances with a gap was about 4%.
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Our third set of experiments involves random graphs. First we report the
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3
N
N
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Table 4 Graphical model with unit edge lengths.

Value of 2 p and 21p.
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Among the instances where a dominating set did not exist, about 28% had a T Ja
gap. R
Next we turn to the graphical model with non-unit edge lengths. We ?§f'
started from 10 random trees on n = 50 nodes. We then added random edges, 50

at a time, until the graphs contained 849 edges. The edge lengths were <\

.

L

computed using the same scheme as earlier, Namely, the nodes were assigned

s
e o 7
By sy ¢

..' ;.', [N

et

random integer coordinates in a square of size 10x10 and the length of an edge

.,
b

was the Euclidean distance between its two endpoints, rounded to the closest

|

integer. The distance between two nodes of the graph was taken to be the

]

’jl. A ?ﬁj
i

length of the shortest path joining them in the graph. Table 5 reports the
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TS

number of instances with a gap (out of 10), as a function of the number of

DS~y

edges in the graph and k.
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(out of 170)

17 22

28
Number of instances with a gap.

taken over the instances with a gap was less than 1%.

Graphical model with non-unit edge lengths.
For this model, the fraction of instances with a gap was about 12%.
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Note that the first line of Table 1 corresponds to the case of the graphical
49x50
2

model where the number of edges is = 1250 and, as such, could be added
as a line of Table 5.

Finally, the fourth set of experiments deals with the uniform cost
model. We generated 30 problems with random integer costs. In the first 10
problems the costs were in the range [1,10], in the next 10 in the range
[1,100] and in the last 10 in the range [1,1000]. For each problem the values

of 21p and 2| p were computed for 2 < k < 10. For each range and value of k,

Table 6 contains the number of instances with a gap (out of 10).

k |2 3 4y 5 6 7 8 9 10 | Total
range | | (out of 90)
|
10 | 10 10 10 10 10 10 10 6 .| 80
100 | 10 10 10 10 10 10 10 8 5 | 83
1000 | 10 10 10 10 10 10 10 10 6 | 86
I I
Total | 30 30 30 30 30 30 30 2U 15 | 249
(out of 30)| | (out of 270)

Table 6 Uniform cost model with n = 50,

Number of instances with a gap.

For this model, the fraction of instances with a gap was about 92%

overall, 100% for k s 8. This fits well with the results of Section 5. The
Z1p~%Lp
, Z1p

reached 18% for one of the problems with costs taken in the range [1,1000] and

value of the ratio was much larger than in the other models. It
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k = 3. Note, however, that this is still far below the asymptotic value of

33% predicted by Theorem 8 when k = 3.

7. The Simple Plant Location Problem

Although we proved our probabilistic results for the k-median problem,
they can also be useful for the SPLP. To define an instance of SPLP, we need

fixed costs fJ, j=%,...,n, in addition to the distances dijv 1<1i, J <n.

»_»
l‘l
2

g For simplicity, we assume in this section that the fixed costs fj are all Sagf
~ :-‘_:-".
N\ identical, say f.=F. e
'\‘ b " [N o,
N P
aZaka
i : 2
> Theorem 10 Consider the Euclidean model in the plane and assume that :\jx
N N
N - - Ve
v n® "2 < £ <n'° for some fixed ¢ > 0. Then, for the SPLP, jhf:
N 21p-%Lp AN
E - .00189255. .. almost ‘surely. - =
" IP Ny
: 730
< . 3004
t; Proof. In this proof, 2zyp and z; p denote the optimum values of SPLP and its $:$‘
7 A
- linear programming relaxation respectively. The solutions of the ::ﬁ
. '.‘:}
I\ “-

w

corresponding k-median problem (with same dij's) and its relaxation are

o At
r'. *

denoted by z;p(k) and z;p(k) respectively.

By definition z;p = min (z p(k) + kf) = min(z1,zz,z3), where
k

a)
\
‘
1
‘

z, min (zLP(k) + kf),

k<w

min (ZLP(k) + kf), and

n
“skswlogn

mi: (z p(k) + kf).
wlogn

k>



First we compute z,. From the proof of Theorem 2,

1/3
Pr(zLP £ [ _2n (1-0(1)), 2n_ (1+0(1))] ) = O(ne’zw logn/g)

3/kn 3/kr

IS s A A

min { 2n (1+0(1)) + k f}  almost surely.

<k < —2 3/kn

w logn

2 Ihe minimum of the function an_, kf 1is attained when

e
Note that, given our assumptions on f, this value is in the

for a suitable w, say w = log n. The minimum value of

the function is (%luznz 173,

£) Therefore

27 2 2

z, = (U‘ f)1/3 (1+0(1)) almost surely.
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Now consider 23. With our choice w = log n, we have

«

.I
LNANEY

n 5 - Therefore, almost surely,

(log n)

k >

o« & 3 2 0
A
e

Q
[N

n

— f
(log n)2

Z3

LrOh

n1/3f2/3 z, 1)
= (1+0(1 > 2,.
(1og n)2 (%1u2]1/3 2

-"‘.n. ]

Finally consider z;. For all k < log n, we have ZLP(k) 2 zLP(log n).

£,

Therefore z, 2 zLP(log n). This implies that, almost surely,

At

2 (140(1)) 030 (eott)
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where ¢ is a constant.

We have just proved that

2z, 5 ~ (2132n2f11/3 almost surely.
LP y
Similarly, z;p = min (zIP(k) + kf). Following the proof of

k
Papadimitriou [22], we can show that

(B1) zpp = min [gﬁr(1+o(1)) + fk) almost surely,
where B8 = .3771967... . The minimum in (41) is achieved when k = (§2]2/3

2f
and its value is %1 82n2f)1/3 (1+0(1)).

Z1p-2p 82/3-02/3

So —/——— ~ =——F53— almost surely.
Zp 82/3
a
Similarly, the next result can be shown using the proof of Theorem 8.
Theorem 11 Consider the  uniform cost model .and assume that
n® ' < £ <n'"® for some fixed ¢ > 0. Then
2.2
AP LP 1 - '/i almost surely.
z 2
IP
8. Conclusion
The LP relaxation (1) - (4) has been widely used in branch and bound

algorithms for the k-median problem and has been reported to provide a tight
bound in practice. Our analysis shows that such good results can indeed be
expected in a probabilistic sense for some problem instances, but we also

identify other instances where the LP relaxation is almost surely not tight.
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The probabilistic analysis is performed under four classical models in TNl

location theory, namely the Euclidean, network, tree and uniform cost

¢ Oy
o & .

models. For example, let w = w(n) » =, When w <k < in the $~.‘

wlogn X
Euclidean model, z;p/z;p = .99716... + o(1) almost surely, and when é?&;ﬁ

v JJJ’

w<ks in the uniform cost model, 2;p/zip = .5 + o(1) almost surely.

n
wlogn

>

- Our computational experience confirms that large gaps occur frequently in Mo

the uniform cost model whereas only small gaps were observed with the other fele

RS %

models. 2oty

\

Another aspect of the probabilistic analysis performed in Section 2, 3 :\ -+

Uil Y 20 35 20 Q4
.'
*
2

and 5 is that, under various assumptions, branch and bound algorithms must

almost surely expand a non-polynomial number of nodes to solve k-median ﬁﬁ?ﬁ?

- ¥

problems to optimality. DA

. >
Finally, we mention as open problems the questions of describing the ,}.E

D rEs

n
log n

" asymptotic behavior of 2(p/2;p as n -+ = when (i) k=2 .in the , 2

K
)
f“ & PN

Euclidean model, (ii) each edge of the graph has a random length dij (drawn

e 8 8 5 s

X

%

e
Py

uniformly in the interval ([0,1], say) in the network and tree models, (iii)

N n_ o< n(e-1)
logn~- "~ e

1{‘-;
‘-..,‘.'..‘v‘ -

in the uniform cost model.
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algorithms that use this relaxation as a bound must almost surely expand a non-poly-
nomial number of nodes to solve the k-median problem of optimality. Finally, we
report extensive computational experiments. As predicted by the probabilistic
analysis, the relaxation was not as tight for the problem instances drawn from

the uniform cost model as for the the other models.
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